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Abstract—The Roofline model has been proposed to visually
associate application performance against the computational and
bandwidth capabilities of the underlying platform. Since FPGAs
lack fixed operation units, modifications in the original CPU-
based Roofline model should be made. In this paper, we propose a
new application-centric approach to construct the FPGA Roofline
model extending previous work and encompassing resource and
latency constraints to provide a more fitting ceiling. Moreover, we
generalize our model to accommodate platforms with multiple
accelerators whose execution footprint may be strongly input-
dependent due to conditionals and complex loop structures.
We evaluate our model and compare it with previous models
on KinectFusion, a complex, multi-kernel algorithm for visual
Simultaneous Localization and Mapping (vSLAM) used for au-
tonomous agent navigation. Our work makes it feasible to deploy
Roofline analysis on a wider range of MPSoC-based FPGAs that
consist of more complex HW/SW components and not just single
accelerators.

I. INTRODUCTION

Reconfigurable hardware accelerators have become popular
in embedded systems, trading higher development time with
improved performance and energy efficiency. However, the lack
of tools to assist designers in evaluating the effect of FPGA
optimizations and guide optimization selection has always
been an impediment to FPGA system design. The Roofline
model [1], a concept proposed initially for CPU performance
analysis, could potentially become established as a solid tool
to estimate optimization gains for FPGA designs.

The Roofline model is a 2D graph that estimates performance
limits of a given application running on a multi-core or acceler-
ator architecture, by showing its inherent hardware limitations.
The vertical Y axis represents the performance (in ops/sec),
and the horizontal X axis the arithmetic intensity (AI) of the
executed application (in ops/byte). The AI denotes the number
of operations per byte of memory traffic. A horizontal line
representing the peak performance and a diagonal line defined
by the maximum memory bandwidth, mark the limits of system
performance due to hardware. A given kernel implementation
with arithmetic intensity AI can be either memory- or compute-
bound. The goal is to apply optimizations to move performance
closer to the ridge point (intersection of the diagonal and
horizontal lines), which corresponds to the highest performance
at the lowest amount of resources.

In recent years, there has been an effort to extend the concept
of Roofline analysis to FPGA accelerators especially in the
HPC domain [2], [3], [4], [5], [6], [7]. This is because the
number of compute resources such as programmable DSPs
used for floating-point operations has significantly increased [8]

making FPGAs appealing for HPC applications, in particular
in terms of energy efficiency [9]. Moreover, the proliferation
of HLS tools that facilitate FPGA programming using high
level programming languages has widen FPGA deployment to
developers in domains such as embedded computing with its
abundance of emerging workloads such as AI at the Edge [10],
Robotics [11], Security [12], Data Analytics, etc. Therefore, the
Roofline model should be studied for such FPGA workloads.

In prior work, some Roofline models consider only the
resources of a particular FPGA device and estimate a peak
performance, either by calculating the number of computing
units that fit into the FPGA [13] or through benchmarks [14].
The fully-programmable nature of FPGAs has led others to
constructing specific models for each application, since the
architecture depends on the algorithm ported to the FPGA [2].

Our work proposes a novel application-centric Roofline
model for MPSoC FPGA platforms that considers the resources
of the FPGA device, the operational latency and the structure
of the kernel code and, hence, is more accurate than previous
work. We evaluate our Roofline model on KinectFusion, a
well-known visual Simultaneous Localization and Mapping
(vSLAM) algorithm. vSLAM is the process of mapping a
moving agent’s (e.g. robot or drone) observed environment
using an image sensor, while concurrently determining the
agent’s pose within that map. Our contributions are summarized
as follows:

• We introduce a novel FPGA Roofline model that consid-
ers resource and latency constraints as well as the loop
structure of a kernel to achieve a more accurate, but still
intuitive and simple to construct Roofline ceiling.

• We extend our model to accommodate multiple kernels
implemented in the FPGA fabric and/or in the CPU.

• We illustrate that the arithmetic intensity of an application
may vary considerably across various inputs presenting an
input-dependent rendition of our Roofline model.

• Finally, we evaluate the Roofline model and compare it
with the previously proposed work by visualizing the
impact on performance of a series of optimizations on
KinectFusion.

II. ROOFLINE MODELS

A. Memory Bandwidth Ceilings
The first step to constructing the Roofline model of a MPSoc
FPGA accelerator is to calculate the peak memory bandwidth
between the accelerator and the CPU host memory. The peak
memory bandwidth Bpeak assumes that the host memory



communicates with the accelerator using the bursting mode
sending a new beat of data every bus cycle without the need
of continuous handshakes:

Bpeak =

N∑
i=1

dwidth,i · ftran (1)

where N is the number of AXI ports, dwidth,i is width of port i
of the AXI data bus, and ftran is the maximum bus frequency.

The FPGA device used in our evaluation, the Zynq Ultra-
Scale+ ZCU102 Evaluation Board, features 8 I/O ports and
has peak theoretical memory bandwidth 2400 MTransfers/sec
× 64-bit, which is equal to 19.2 GB/sec. However, using the
benchmark presented in [15], the peak achievable performance
in ZCU102 was measured at 75% of the theoretical peak for
the DDR memory, hence equal to 14.4 GB/sec.

A tighter bandwidth ceiling that corresponds to random
memory accesses assumes that memory locations are individu-
ally and randomly accessed (i.e. no bursting) by the accelerator
so that each new transaction has to be preceded by a hand-
shake between the accelerator and the memory controller. For
example, the ceiling of the achievable bandwidth for random
memory accesses lies much lower than the peak bandwidth
ceiling at only 0.17 GB/sec.
B. Computational Ceilings
1) Application-agnostic Roofline model
This model considers only the available FPGA resources
(LUTs, DSPs, and FFs) without considering the applications
and their implementation. The goal is to determine the peak
integer/FP performance by calculating the maximum number
of concurrent operations supported by the resources of the
FPGA. We use both the integer and the FP add/sub operation to
construct two separate peak performance ceilings for the cor-
responding operation type, since they are basic operations that
utilize the minimum number of resources, and, hence maximize
peak performance when executing multiple such operations
in parallel on the device. We derive the number of FPGA
resources required by a single add/sub operation for different
implementations of the function that exploit either (i) both
DSPs and LUTs or (ii) only LUTs [13]. The maximum number
of integer/FP operations that can be executed concurrently on
the FPGA is given by:

opsagnostic = max

(
min
t

Rt

rt,all
,min

t

Rt

rt,logic

)
(2)

where Rt is the number of available resources of type t,
t ∈{LUTs, DSPs, FFs} in the FPGA and rt,all and rt,logic
denote the amount of resources of type t needed for a 32-
bit addition for each of the implementations (i) and (ii),
respectively. The peak performance is given by:

PPagnostic = fop · opsagnostic ·AF (3)
where fop is the operating frequency when the maximum
number of add/sub operations is instantiated in the FPGA
and AF is an adjustment factor used to account for routing
resources. We use a default value of 0.8 according to [16].
2) Application-centric Roofline model
One disadvantage of the application-agnostic model is that the
ops/sec metric might not always be an appropriate performance

indicator. If an optimization reduces both the execution time
and the number of operations, this ratio could potentially
be lower than the baseline implementation despite the im-
proved execution time. An example is approximate computing,
where non-critical operations are eliminated to trade-off re-
duced output accuracy with increased performance. In addition,
the application-agnostic approach provides unrealistically high
roofline walls that correspond to unattainable performance
levels.

To paint a more accurate picture of the performance we
choose Generated Results / sec as the unit for the Y axis.
Examples of generated results could be a cell update for a
dynamic programming algorithm [2], and a pixel or a frame
for an image processing or video algorithm. The first step
of our procedure is to count the operations (ops) (FP or
integer arithmetic, logic operations, comparisons and indexing)
involved in generating the output. The peak performance in
Generated Results / sec unit is given by:

PPcentric = fop ·
opsagnostic

ops
·AF =

PPagnostic

ops
(4)

3) Application-centric Roofline model with latency constraints
Evidently, the peak performance of a kernel is achieved when
all its loop iterations are executed concurrently, constrained by
the resource availability (as in the first and second methods),
and also by the latency of a loop iteration. A kernel may consist
of multiple nested multi-path loops L with data dependencies
between them or within operations in the same loop (Fig.
1). Since our objective is to compute the theoretical peak
performance of the kernel, we assume all inner loops are
fully unrolled by the compiler and that there are no data
dependencies within and across loops, so that they can be
scheduled to execute concurrently. The peak performance PP
of the kernel is constrained by the operator with the highest
latency across all possible execution paths since the kernel
cannot be faster than its slowest operation. Note that we
exclude paths that execute under error conditions since they
may provide unrealistic performance ceilings.

Fig. 1: Kernel that consists of two loops with multiple execution paths.
The height of each basic block denotes its latency, which equals to the
maximum latency among the operators in the respective block. Kernel
latency is constrained by the blocks with the highest latency (in our
case BB2 and BB5).

We compute the ceiling as follows: first, we count the number
of operations opskernel required by each kernel invocation. Let
each operator op ∈ {+,−, ∗, /,%, etc} have a dynamic count



of cop. Then:

opskernel =
∑
∀op

cop (5)

The percentage of the total kernel operations for each operator
op is equal to

Pop =
cop

opskernel
, ∀op (6)

We define opsmax as the maximum number of operators that
fit in the FPGA, while preserving the relative (%) contribution
of each operator op in the kernel. Therefore:∑

∀op

opsmax · Pop · rt,op ≤ Rt, ∀t (7)

where rt,op is the amount of resources of type t needed by op-
erator op and is different from the one defined in Section II-B1.
Rt is the available amount of resources of type t in the FPGA.
Solving for opsmax and replacing the inequality we obtain:

opsmax =
Rt∑

∀op
Pop · rt,op

, ∀t (8)

Since Eq. 8 produces a different opsmax for each resource t,
we choose the opsmax corresponding to the most constraining
resource as:

opsmax = min
t

Rt∑
∀op

Pop · rt,op
(9)

Then, the number of Generated Results that fit in the FPGA is
GR =

opsmax

opsresult
(10)

where opsresult is the number of operations in Ops/Generated
Result involved in the generation of a result. Finally, the peak
performance is computed as

PP =
GR · fop
lmax

(11)

where lmax is the highest latency among all kernel operations.

4) Combined Roofline Model
Most complex applications typically consist of multiple kernels
that should be optimized in tandem in order to achieve peak
performance. Therefore, to gain a more realistic performance of
our application, we can no longer assume that each kernel has
the entire FPGA fabric for itself. To construct the combined
roofline model, we calculate the operations opstotal in all
kernels, summing the partial sums yielded by Eq.5. In order
to maintain the same contribution of a kernel to total execution
time, we regard each operation in each kernel separately. For
example, we view a FP add in the bilateral filter as a different
operation from a FP add in the integration kernel. Then, we
apply Eqs. 6-11, with the key differences that (1) opskernel
is substituted with opstotal, (2) opsresults refers to the total
operations in all kernels and (3) lmax to the operation with the
highest latency across all kernels.
5) Input-dependent Roofline models
All Roofline models proposed in the literature assume that
performance and AI are input-independent, or, in the best case,
they consider the average values of these two metrics across the
input set. To accommodate the most general case, we propose
the input-dependent Roofline model which produces a different

data point for each accelerator invocation. In the experimental
evaluation section, we show that this model can be used to
provide valuable insights for the behavior of the application that
would not be available using the conventional input-agnostic
models.

III. KINECTFUSION ALGORITHM

KinectFusion is a vSLAM algorithm that receives a constant
stream of depth maps and uses it to track the camera pose and
to update a global 3D model of an indoor scene [17]. Fig. 2
outlines the block diagram of KinectFusion. We briefly describe
the functionality of each kernel below.

Fig. 2: KinectFusion data processing pipeline [18]

The Bilateral Filter is an edge-preserving, stencil-based
blurring filter that reduces the impact of noise and invalid depth
data by applying a convolution between the depth image and
a 5x5 coefficients array. Tracking is based on the Iterative
Closest Point (ICP) algorithm which estimates the 3D pose of
the agent by registering the input depth frame with the 2D
voxel map (the output of the raycast). Integration uses the
output of the tracking to fuse the input depth frame into the
3D voxel grid, which represents the global map of the agent’s
environment. Raycasting is a well known computer graphics
algorithm that converts 3D scenes into 2D images.

The integration and raycast kernels contribute more than
70% of total execution time when running the C++/OpenMP
KinectFusion implementations on an 4-core ARM Cortex-A53
CPU [19].
A. Precise and Approximate Optimizations
Precise optimizations retain the accuracy of the baseline code.
They include loop unrolling, loop pipelining, loop interchange
to improve access locality, prefetching data from DRAM to
the internal block RAMs to reduce latency, and instantiating
multiple compute units to exploit task-level parallelism.

Approximate optimizations may negatively affect the ac-
curacy of the baseline code. Approximate optimizations are
critical in achieving real-time KinectFusion performance in an
FPGA [19], [20]. Table I shows the approximate optimizations
for each KinectFusion kernel.
B. Ranking of the Impact of KinectFusion Optimizations
The relative impact of KinectFusion optimizations on per-
formance is quantified using Lasso [22], a regularized linear
regression method that builds a model for coefficient selection.

Table II shows the features with the largest coefficients
which indicate a stronger correlation between the corresponding
feature and performance. Since using features with higher
degree provides better model accuracy (lower mean square
error, MSE), we choose to report features up to the second
degree for each kernel.



TABLE I: Approximate optimizations of the KinectFusion kernels.

Optim. Name Description
Bilateral Filter

BF Coeff Use 3x3 coefficients instead of 5x5
BF HP Use 16-bit floating-point (fp16) arithmetic
BF Range No range filter (Eliminates an exponent function)

Tracking

Tr LP Loop perforation (Skips loop iterations [21])
Tr HP Use fp16 arithmetic
Tr LvlIter Skip pyramid levels and reduce max. # of iterations

Integration

Int LP Loop perforation
Int HP Use fp16 arithmetic
Int Br Eliminate checking of special conditions
Int FPOp Eliminate expensive FP ops (square, root-square)

Raycast

R Step Larger ray steps
R LP Skip computing of rays (loop perforation)
R TrInt Use 2 points instead of 8 for trilinear interpolation
R Fast Use –ffast-math
R Rate Perform raycast every other frame

As expected, the most significant optimizations are related
to loop transformations such as loop interchange, pipelining,
and unrolling. For example, unrolling the inner loop of the
Bilateral Filter (BF Unroll), pipelining the inner loop of the
Integration kernel (Int Pipe) and applying loop perforation at
the Raycast kernel (R LP) are the most impactful optimization
of these three kernels.

IV. ROOFLINE ANALYSIS

For our experiments, we use the KinectFusion implementation
of the SLAMBench suite [18]. We target the Xilinx UltraScale+
MPSoC ZCU102 board which includes a quad-core 1.2 GHz
ARM Cortex-A53 processor. The FPGA fabric is clocked at
300 MHz. As input, we use the 882-frame lr.kt2 trajectory from
ICL-NUIM [23]. In this section, we present the Roofline model
for each kernel and for the whole application. We confirm
the results of the analysis visually in the Roofline model
by progressively and cumulatively incorporating optimizations
in descending order of impact for each kernel according to
Table II, and observe that the leaps in performance gradually
become smaller.
A. Kernel Evaluation
Bilateral Filter. The rooflines in Fig. 3 visualize the perfor-
mance gains yielded from precise and approximate optimiza-
tions on the Bilateral Filter accelerator. After unrolling the main
loop (BF Unroll), which also included row-wise streaming
of the input frame to the FPGA BRAMs, memory accesses
were considerably reduced and the design moved towards
the compute-bound area in all three models (Fig. 3). The
application-agnostic model failed, however, to capture the ac-
tual contribution of approximate optimizations to the through-
put, validating our claim that ops/sec is not always indicative of
performance. As already mentioned, approximate optimizations
may reduce both the AI and the ops/sec which makes the
latter a misleading indicator of their effect on throughput
(remember that optimizations down the list are cumulative).
For example, the BF Range point is located below the loop

pipeline (BF Pipeline) point in the application-agnostic model,
even though the former configuration has higher throughput.
BF/sec is a more meaningful metric as confirmed by the two
application-centric models. As shown in the two application-
centric models, the most impactful optimizations according to
Lasso analysis (BF Unroll and BF Pipe) provide the highest
performance improvement from 0.54 Hz (baseline HW) to
328 Hz (607x speedup). The remaining optimizations increase
throughput to 624 Hz (just 1.9x incremental speedup), which
almost touches the 722.84 Hz computational ceiling.

Similarly, Fig. 4 shows the Roofline model of the Integra-
tion kernel (only the approach of Section II-B3 is shown). The
throughput of the Integration accelerators ranges from 0.72 Hz
to 60.11 Hz. Unlike the BF filter which consists of a single
data-parallel loop and, hence, can be thoroughly optimized,
the Integration kernel has a multi-path loop and its theoretical
peak performance PP is defined by a fast path that is executed
infrequently.

The input-dependent Roofline model of Fig. 5 indicates that
there are large variations in performance and AI across frames
(AI ranges from 5.72×10−7 to 26.6×10−7Integrations/byte
in the fastest approximate implementation), hence, justifying
the holistic approach to Roofline analysis that accommodates
variations of the input data. An interesting remark inferred
from the upward and rightward orientation of the data point
trajectories of Fig. 5 is that higher AI generally corresponds
to higher performance, validating that memory is the most
constraining factor for the performance of the Integration
accelerator and should be the first optimization target.

The Raycast kernel is executed on the ARM 4-core CPU
because its irregular memory access pattern makes HW imple-
mentation very challenging. The difference between the (soft-
ware) Roofline model of Fig. 6 and a hardware Roofline model
is that for the former, performance is inversely proportional to
the AI, indicating that for the host CPU the priority should
be to minimize the computational demands. Moreover, the
input-dependent model of Raycast in Fig. 7 portrays this exact
association of the input with AI; data points that correspond to
higher AI, typically exhibit lower performance.

The combined Roofline model of Fig. 8 merges both soft-
ware and hardware ceilings. The peak ARM performance (red
horizontal ceiling) was calculated by dividing 9.6 GFLOPs/sec
with the number of operations executed in the Raycast kernel.
The (red) memory bandwidth ceilings are derived from the
specifications of the ARM processor. The dotted line is the
bandwidth of random memory accesses for the kernels that are
executed on hardware. Note that the peak performance at 58.03
Hz is much lower than the ceilings of the respective kernels,
since we need to limit the resources assigned to each kernel
to fit all of them in the FPGA (Section II-B4). Optimizations
such as Int LoopInter and Int Pipeline rank very high in Lasso
analysis, but exert a small impact on performance when applied
alone. They act as enablers for the remaining optimizations, and
no high performance implementation is possible without them.



TABLE II: Lasso analysis of KinectFusion throughput

Bilateral Filter (MSE=0.039) Integration (MSE=0.0008) Raycast (MSE=0.0016) Combined (MSE=0.0048)

Feature Coeff. Feature Coeff. Feature Coeff. Feature Coeff. Feature Coeff.

BF Unroll2 0.126 Int Pipe2 0.184 R LP -0.145 Int Pipe2 0.085 Int LP -0.034
BF Pipe*BF Unroll 0.099 Int Pipe*Int Inter -0.167 R Rate -0.110 Int Inter*Int Pipe -0.056 Tr Pipe*R LP 0.028
BF Pipe -0.095 Int Inter2 0.156 R Step -0.057 Tr Pipe2 0.044 BF Pipe*BF Unroll 0.028
BF Unroll*BF Coeff 0.064 Int LP -0.120 R Fast -0.056 Int Pipe*Int Unroll -0.043 Int Unroll 0.026
BF Coeff -0.060 Int Inter*Int LP 0.113 R LP*R Rate 0.049 Int Inter*Int Unroll 0.039 BF Pipe -0.023

Int Unroll -0.039 R TrInt -0.047 BF Unroll2 0.037 Int Pipe*Int LP 0.020

(a) (b) (c)

Fig. 3: (a) Application-agnostic, (b) application-centric, (c) application-centric with latency constraints Roofline models for the Bilateral Filter
(BF) accelerator. Some data points might overlap and appear missing. Peak performance in (b) and (c) is in # BF invocations/sec (Hz). BF NCU
optimization uses N=2 BF accelerators. GOPs could denote GINTOPs or GFLOPs in Figures (a) and (b). KFusion uses GFLOPs.

Fig. 4: Application-centric Roofline model with latency constraints for
the Integration kernel. Int NCU optimization uses N=4 accelerators.

Fig. 5: Input-dependent Roofline model for the Integration kernel.

Fig. 6: Roofline model for the Raycast kernel.

Fig. 7: Input-dependent Roofline model for the Raycast kernel.

Fig. 8: Combined Roofline model.

V. CONCLUSIONS

We generalize Roofline analysis to the more general setting
of multi-kernel MPSoC systems that combine CPU execution
with HW accelerators. We evaluated two existing Roofline
models and proposed a new application-centric model that
considers the operation latency and imposes a more realistic
bound on FPGA acceleration. We also proposed the input-
dependent model outlining the importance of considering input-
centric parameters when designing an optimization policy. We
validated these concepts on a multi-kernel vSLAM application,
and we indicated how our contribution can be used to better
understand application characteristics.
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